
On Retargeting the AI Programming Framework
to New Hardwares

Jiacheng Zhao1,2, Yisong Chang1,2, Denghui Li1, Chunwei Xia1,2,
Huimin Cui1,2?, Ke Zhang1,2 and Xiaobing Feng1,2

1 SKL Computer Architecture, Institute of Computing Technology, CAS
2 University of Chinese Academy of Sciences

{zhaojiacheng, changyisong, lidenghui, xiachunwei,

cuihm, zhangke, fxb}@ict.ac.cn

Abstract. Nowadays, a large number of accelerators are proposed to
increase the performance of AI applications, making it a big challenge
to enhance existing AI programming frameworks to support these new
accelerators. In this paper, we select TensorFlow to demonstrate how
to port the AI programming framework to new hardwares, i.e., FPGA
and Sunway TaihuLight here. FPGA and Sunway TaihuLight represent
two distinct and significant hardware architectures for considering the
retargeting process. We introduce our retargeting processes and experi-
ences for these two platforms, from the source codes to the compilation
processes. We compare the two retargeting approaches and demonstrate
some preliminary experimental results.

Keywords: Retarget, AI Programming Framework, FPGA, Sunway

1 Introduction

In recent years, AI has moved from research labs to production, due to the en-
couraging results when applying it in a variety of applications, such as speech
recognition and computer vision. As the widespread deployment of AI algo-
rithms, a number of AI processors [1, 2] and FPGA accelerators [3, 4] are pro-
posed to accelerate AI applications meanwhile reducing power consumption,
including DianNao [1], EIE [2], ESE [4], etc. Therefore, it is a significant issue
for retargeting AI programming frameworks to different hardware platforms.

Some popular AI programming frameworks, e.g., TensorFlow/MXNet, have
enhanced the fundamental infrastructure for retargetability using compiler tech-
nologies. In particular, TensorFlow introduces XLA [5] to make it relatively easy
to write a new backend for novel hardwares. It translates computation graphs
into an IR called “HLO IR”, then applies high-level target-independent opti-
mizations, and generates optimized HLO IR. Finally, the optimized HLO IR is
compiled into a compiler IR, i.e., LLVM IR, which is further translated to ma-
chine instructions of various architectures using the compiler of the platform.
Similarly, MXNet introduces NNVM compiler as an end-to-end compiler [6].

? To whom correspondence should be addressed.



2

The evolving compiler approach significantly enhances the retargetability of
AI programming frameworks. However, it still has a number of challenges. First,
the non-compiler version is of the essence since it guarantees performance via
directly invoking underlying high performance libraries. Therefore, maintaining
the TensorFlow non-XLA and MXNET non-NNVM versions are necessary when
retargeting the frameworks to a new platform. Second, the existing compiler ap-
proaches rely on LLVM backend of the AI processors, since the final binary code
generation is implemented by the backend compiler. But for emerging AI proces-
sors especially designed for inference, vendors typically provide only library APIs
without compiler toolchains. Therefore, it requires us to consider retargetability
of non-compiler approaches for AI programming frameworks.

In this paper, we select one representative AI programming framework, Ten-
sorFlow, to present our experience of retargeting it to FPGA and Sunway Tai-
huLight. For FPGA, the architecture is the X86 CPU equipped with FPGA as
an accelerator, thus we discuss how to add a new accelerator in TensorFlow.
Meanwhile, we also design a set of software APIs for controlling FPGA in high-
level C/C++ languages. For Sunway TaihuLight, the processor is a many-core
architecture which has 260 heterogeneous cores. All these cores are divided into 4
core groups (CG), with each CG including a big core and 64 little cores. Sunway
can be regarded as a chip integrating CPUs (big cores) and accelerators (little
cores), thus we discuss how to change the CPU type in TensorFlow. In this pa-
per, we respectively discuss how to retarget TensorFlow to these two distinct
architectures, and present some preliminary experimental results on FPGA and
Sunway TaihuLight. We wish this paper can be helpful for programming frame-
work developers to retarget TensorFlow to other newly designed hardwares.

The rest of this paper is organized as follows: Section 2 and 3 discuss how to
retarget TensorFlow to FPGA and Sunway TaihuLight respectively. Section 4
demonstrates experimental results. Section 5 discusses differences of retargeting
to FPGA and Sunway. Section 6 discusses the related work. Section 7 concludes.

2 Retargeting TensorFlow to FPGA

2.1 FPGA Execution Model

A representative approach to utilizing FPGA is Amazon EC2 F1 [3], which is a
compute instance with FPGA that users can program to create custom acceler-
ators for their applications. The user-designed FPGA can further be registered
as an Amazon FPGA Image (AFI), and be deployed to an F1 instance.

We also follow the design rule for leveraging FPGA in AI programming frame-
works. In particular, we create an abstract execution model for FPGA, and pro-
vide a set of APIs for the developers to register an FPGA into the system. In
this paper, we use the naive first-in-first-out policy (FIFO) to model the FPGA
execution, shown in Figure 1a. Furthermore, the task execution on our FPGA is
non-preemptive. Our current execution model is similar with GPU kernel execu-
tion (without streams). Certainly designers can create different execution models
for FPGA, and TensorFlow runtime shall be adjusted correspondingly.



3

(a) Execution model of FPGA. (b) APIs of FPGA.

Fig. 1: Abstract execution model and APIs of target FPGA accelerators.

2.2 FPGA APIs and Implementation

Furthermore, we also provide a set of abstract APIs for accessing FPGA accel-
erators. The abstract APIs are designed to be standard C functions and data
structures, as shown in the top part of Figure 1b. The APIs are:

– FPGA InitConfig. FPGA resource initialization and configuration.
– FPGA Malloc/Free. FPGA memory management.
– FPGA CopyBufH2D. Copy data from host to device, using DMA.
– FPGA CopyBufD2H. Copy data from device to host, using DMA.
– FPGA TaskDesc t. Data structure for FPGA task description.
– FPGA CommitTask. Commit a task to FPGA.

The APIs are implemented in the operating system (middle part of Fig-
ure 1b) and user-space libraries (top part of Figure 1b) coordinately. User-space
libraries encapsulate the FPGA accelerators into APIs, based on interfaces pro-
vided by the FPGA driver framework. The FPGA driver framework interacts
with FPGA hardware via PCIe bus, and consists of four functional components:
“PCIe Driver” for handling PCIe device registration and interrupts, “DMA Con-
figure” for DMA memory transfer requests, “Software Task Queue” for FIFO
execution model and “FPGA Monitor & Management” for monitoring and man-
aging FPGA devices, such as querying FPGA states and task status.

2.3 TensorFlow Architecture for Supporting Retargetability

Figure 2a illustrates how TensorFlow executes user-defined dataflow graphs.
When the session manager receives a message of session.run(), it starts the
“computational graph optimization and execution” module, which automati-
cally partitions the dataflow graph into a set of subgraphs, and then assigns the
subgraphs to a set of worker nodes.

The execution of subgraphs is managed by “dataflow executor”, which is
local to one worker node where the subgraphs are assigned to. The dataflow
executor schedules operations in subgraphs to the underlying devices. Dataflow



4

(a) TensorFlow dataflow graph execution. (b) Architecture of TensorFlow [7].

Fig. 2: TensorFlow architecture and its execution of user-defined dataflow graphs.

executor prepares the input and output data for each kernel invocation, launches
the specific kernel via device executor (e.g. CPU/GPU Executor in Figure 2a).

Figure 2b further depicts the overall architecture of TensorFlow framework.
The modules related to retargeting are: “Device Layer”, “Dataflow Executor”
and “Kernel Implementation”. “Device Layer” aims to provide proper abstrac-
tion of FPGA resources and launching FPGA tasks. “Dataflow Executor” should
be aware of the FPGA devices and be able to assign operations to them, and
“Kernel Implementation” is the fundamental operation kernels on the FPGA.

2.4 Supporting FPGA in TensorFlow

Step 1. FPGA Device Abstraction. First, we add the FPGA device into the
device layer. Two important issues are addressed here:

Memory Management: FPGA accelerators are commonly equipped with
DDR memory to hold input/output features and/or weights. This memory is
treated as a memory pool in our work and C-style memory management scheme
is provided. Thus, four critical routines: memcpyDeviceToHost, memcpyHost-
ToDevice, malloc, and free are implemented using APIs provided in Section 2.2.

Execution Model: Execution model determines how TensorFlow runtime
interacts with underlying devices and must match the nature of corresponding
devices. The abstracted FPGA in this paper is a synchronous FIFO device. An
FPGA executor is implemented using APIs defined in Section 2.2.

Step 2. FPGA Device Runtime. Second, runtime support for the new FPGA de-
vice will be implemented, including the kernel launching and high level memory
management wrapper.

Kernel Launching. In TensorFlow, the dataflow executor assigns opera-
tions to specific device by invoking the Compute method of corresponding device,
which is set to launch the Compute function of the given kernel.



5

REGISTER_OP("ZeroOut")

.Input("a: int32")

.Input("b: int32")

.Output("c: int32");

class ZeroOutOp : public OpKernel { public:

explicit ZeroOutOp(OpKernelConstruction* context) : OpKernel(context) {}

void Compute(OpKernelContext* context) override {

// Grab the input tensor

auto input_0 = context >input(0).matrix<int32>();

auto input_1 = context >input(1).matrix<int32>();

// Create an output tensor Tensor*

output_tensor = NULL;

TensorShape outputshape({a.dim_size(0), b.dim_size(1)});

auto output = output_tensor >matrix<int32>();

// Set all but the first element of the output tensor to 0.

const int N = input_0.size();

for (int i = 0; i < N; i++) { output(i) =

input_0(i)+input_1(i);

}

}

};

REGISTER_KERNEL_BUILDER(Name("ZeroOut").Device(DEVICE_CPU), ZeroOutOp);

Fig. 3: An example of implementing an operation in TensorFlow.

High-level Memory Management Wrapper. The device abstraction
provides low-level C-style memory management API. And TensorFlow runtime
requires high-level APIs to deal with tensor data. In particular, a ‘best-fit with
coalescing’ memory allocator, FPGABFCAllocator, is provided to serve the ten-
sor data allocation/free of TensorFlow runtime. Furthermore, two high-level
APIs, CopyCPUTensorToDevice and CopyDeviceTensorToCPU, are implemented
to manipulate tensor data, instead of raw data.

Besides, a factory class, namely “FPGADeviceFactory” is provided to create
and instantiate instances of “FPGADevice”.

Step 3. FPGA Kernel Implementation. Figure 3 shows an example operation in
TensorFlow, where the Compute function takes the input tensor parameters, the
target device, and the context. All the input parameters are encapsulated into
the data structure of OpKernelContext.

When defining an operation, its specific implementation on a device is called
a kernel, which is typically implemented as libraries. For example, most CPU
kernels are implemented via Eigen libraries [8], and most GPU kernels are im-
plemented via CUBLAS or CUDNN libraries. Therefore, when we introduce
FPGA for acceleration, we first define the implementation of operations on
FPGA, which translates to function calls to FPGA CommitTask defined in
FPGA APIs. After implementing an operation on a new device, we should
register the new implementation into TensorFlow, using the REGISTER OP and
REGISTER KERNEL BUILDER.

Figure 3 shows an example for registering a new operation ZeroOut, which
has two input tensor parameters a and b, and generates one output tensor c.
We specify these information in REGISTER OP and implement the operation in
OpKernel. Finally, REGISTER KERNEL BUILDER is used for registering the kernel.



6

3 Retargeting TensorFlow to Sunway

In this section, we first briefly introduce the architecture of Sunway processor,
and then present our retargeting process.

3.1 Sunway Architecture

Sunway 26010 processor [9] is composed of 4 core groups (CGs) connected via
an NoC. Each CG includes a Management Processing Element (MPE) and 64
Computing Processing Elements (CPEs) arranged in an 8 by 8 grid. MPE and
CPE cluster in one CG share same memory space. All the MPEs and CPEs run
at the frequency of 1.45GHz.

On the software side, Sunway uses a customized 64-bit Linux with a set of
compilation tools, including native C/C++ compiler and cross compiler.

Aiming at Sunway processor, we regard MPEs as CPUs and leverage CPEs
for acceleration. However, the MPEs and CPEs share same memory space, mak-
ing it pointless to transfer data between them. Thus, we firstly retarget the
TensorFlow framework which runs on CPUs to the Sunway MPEs, and then
CPEs for acceleration in the retargeted TensorFlow.

3.2 Compiling TensorFlow for Sunway MPEs

We have two ways to compile TensorFlow for Sunway. The first is to use the
native compiler of Sunway nodes by submitting compilation process as a job
for Sunway. The second is to cross-compiler TensorFlow on an X86 server. We
select cross-complication, since the native compiler is too restricted to compile
the large-scale complex TensorFlow source codes. We met a series of obstacles
during the retargeting process, and we discuss them here for providing some
experience of porting a large scale software package to Sunway TaihuLight.

Static linked library. First, Sunway TaihuLight does not support dynamic
linked library when CPEs are expected to be used. Therefore, we choose to
cross-compile TensorFlow into a static linked library, i.e., libtensorflow.a.

The Bazel compilation tool. TensorFlow is configured to use Bazel as its
default compilation tool, which can generate dynamic linked library, but does not
work well for generating static linked library. Meanwhile, a number of unexpected
problems raised when using the cross compiler swgcc in Bazel. Therefore, we
switch to use Makefile as our compilation tool.

The Python support. TensorFlow is tightly coupled with the language of
Python, which is not supported on Sunway TaihuLight. A number of modules
utilize Python-based tools, such as tf.train and tf.timeline. Therefore, we decou-
ple these modules from the TensorFlow framework. As a result, our retargeted
TensorFlow on Sunway TaihuLight only supports C++ programming interface,
without support for the Python binding.

Processing protobuf. The Protobuf tool protoc is used both during the compi-
lation of TensorFlow (on X86 platform), and during the execution of TensorFlow



7

(on Sunway TaihuLight platform). For such purpose, protoc is required to be
compiled on x86 platform using X86 native gcc and cross compiler swgcc.

Two-phase compilation. The compilation of TensorFlow is a two-phase com-
pilation. In the first phase, the X86 gcc compiler is used to generate some tools
for X86 platform, e.g., the X86 protoc, which reads the *.pb files in TensorFlow
source code and generates the corresponding C++ files. In the second phase, the
cross compiler swgcc is used to generate the final libtensorflow.a. During this
phase, all dependent libraries should be switched to the static linked versions,
e.g., protobuf, libstdc++, libm, etc.

After TensorFlow is cross-compiled successfully, it can run on the MPEs of
Sunway TaihuLight. Since Python module like tf.train is disabled, the ported
TensorFlow does not support training.

Now we have had a baseline TensorFlow which completely runs on the MPEs
of Sunway. The operations can be implemented following steps in Section 2.4.
Next we add CPEs for acceleration. Specially, MPEs are responsible for graph
creation and optimization, together with task creation and scheduling. Mean-
while CPEs can execute the computation-intensive kernels, e.g. convolutions.

3.3 Using CPEs for Acceleration

We have two approaches for using CPEs. First, we can force the CPU kernel
implementation to invoke CPE libraries, which means MPEs and CPEs are con-
sidered together as one device. Alternatively, we can consider CPEs as individual
accelerators, similar with GPUs and FPGAs. In this paper, we select first ap-
proach as the second approach has been discussed in Section 2.

To use CPEs in an operation, consider the steps described in Figure 3.
Take matmul for example, the original implementation will use Eigen as the
math library in Compute part. We will change the math library from Eigen to
SWCBLAS library, i.e. from Eigen call MatMul<CPUDevice> to sgemm/dgemm
call in SWCBLAS. As SWDNN library is being developed, we only use SWCBLAS
for implementing the operations in this work. When SWDNN is released, we can
use the same approach to change the library from SWCBLAS to SWDNN.

4 Evaluation

We select four DNN models, i.e., Cifarnet [10], Lenet [11], Inception-V3 [12] and
Resnet-50 [13], to evaluate our retargeted TensorFlow on FPGA and Sunway
TaihuLight. The trained models are obtained from TensorFlow model zoo. We
only focus on inference phase. Our experimental results demonstrate that our
retargeted TensorFlow can run correctly on FPGA and Sunway platforms.

The functionality of retargeted TensorFlow relies on underlying operation
kernels. For the aforementioned four DNN models, CPU and Sunway MPE sup-
port all seven main operations: Conv2D, BiasAdd, Pooling, Relu, Softmax, Mat-
mul, FusedBatchNorm. Our FPGA doesn’t implement FusedBatchNorm, which
means it can’t support Inception-V3 and Restnet-50. Sunway CPE supports only



8

Fig. 4: Evaluated hardware of target FPGA accelerator.

Conv2D, Softmax and Matmul. Other operations can be easily supported once
SWDNN is deployed.

4.1 Hardware Platforms

FPGA Implementation: We implement a custom PCIe-attached acceleration
card based on a Xilinx Virtex-7 690T FPGA chip as shown in Figure 4. The
card communicates with host CPU via the standard PCIe Gen3 x8 interconnect.
We leverage dual off-chip DDR3-1600 SODIMMs with total capacity of 8GB as
device memory. Xilinx Vivado 2016.4 toolset is used and the synthesized core
accelerator logic and DMA engine operate at the frequency as high as 200MHz.

Figure 4 further illustrates the design of our FPGA accelerator. For details,
we implement a unified hardware template of DNN accelerator with a config-
urable number of processing elements (PEs) for per layer specific operations, like
convolution and full-connection. The processing element is composed of a 1-D
array of multiply-and-accumulation (MACC) units, loop tiling and unrolling are
leveraged to partition computation into specific PEs. An on-chip buffer is also
implemented to hold tiled input feature map. To reduce the external memory
bandwidth, temporary results are pushed into the PE buffer. Data movements
between PE array and on-chip buffer is elaborately controlled by the PE con-
troller according to the loop unrolling and tiling strategies.

Sunway TaihuLight: The Sunway TaihuLight is described in Section 3,
and we use one node for evaluation. As we focus on the inference, the number
of nodes does not matter.

Baseline Platforms: For comparison, we also run these models on a CPU
and nVIDIA GPU. In particular, the CPU is Intel Xeon E5-2620 which runs
at 2.0GHz and has a main memory of 32GB. The nVIDIA GPU is Tesla K40c
which has the frequency of 745MHz, and the global memory is 12GB.

4.2 Results on FPGA Platform

With our retargeted TensorFlow, programmers can use the “with tf.device(”fgpa:0”)”
statements to use the FPGA, with no modifications in their source codes.



9

Fig. 5: Overall execution time of Cifarnet and Lenet on FPGA, CPU and GPU.

Fig. 6: The overall execution time on Sunway MPE, CPU and GPU.

Figure 5 shows the overall execution time (data transfer time included) of
Cifarnet and Lenet on FPGA, CPU and GPU. In this paper, we focus on retar-
geting process, thus the underlying FPGA implementation is not optimized.

4.3 Results on Sunway TaihuLight Platform

As we treat Sunway MPE and CPEs as a CPU, the source codes needs no
modification and the models can be directly executed on the ported TensorFlow.

Figure 6 shows the overall execution time when using only MPE, in com-
parison with CPU and GPU. Note that the vertical axis is in log scale. Besides,
we use only one core of Sunway and CPU, frequency of which are 1.45GHz and
2.0GHz respectively. Therefore, Sunway MPE performs worse than CPU.

Figure 7 demonstrates the execution time of one convolution operation (with
the filter size of 3x3) on Sunway MPEs and CPEs, in comparison with CPU.
We don’t evaluate the overall execution as some operations are not supported
on CPEs. The horizontal axis marks different scales of input feature sizes and
input/output channel numbers, e.g. 224 ∗ 224 ∗ (3− 16) means input feature size
is 224 ∗ 224 while input channel is 3 and output channel is 16. The vertical axis
is execution time in log scale. The results show that CPEs can obtain significant
performance improvement, up to 45 times than MPE. Furthermore, in our ex-
periments, only one core group is leveraged (the reason is that the SWCBLAS
interface is designed for one core group). The performance is expected to be
improved when all core groups are utilized and SWDNN is released.



10

Fig. 7: Performance of convolution with 3x3 filter size.

5 Discussion and Future Work

We have discussed two types of TensorFlow retargeting processes, i.e., FPGA
and Sunway TaihuLight. In particular, FPGA represents the approach of intro-
ducing a new accelerator into TensorFlow while Sunway TaihuLight represents
the approach of changing the CPU architecture in TensorFlow.

Retargeting to a new AI accelerator. Most of emerging AI processors
will be deployed as accelerators. Thus, our experience of retargeting to FPGA can
apply for such scenarios. The modification for the device layer is the same with
the process for FPGA. The runtime support shall be designed by vendors of AI
processors, in corresponding to their execution model. Furthermore, amount of
work is needed for implementing hundreds of operation kernels. Even if most AI
processors will provide machine learning libraries, porting these operation kernels
are still time-consuming. We will further explore automatic kernel generation.

Exploiting the computation ability of Sunway TaihuLight. Sunway
TaihuLight exhibits performance potential for machine learning, e.g., some pre-
liminary work on SWDNN [14] has been released. To enable more machine learn-
ing programs, especially model training, to run on Sunway TaihuLight, a more
robust TensorFlow is necessary. Thus, we will further consider following issues,
i.e., Bazel compilation tool, Python support, and stable SWDNN library.

Data layout issue. Moreover, the data layout is a significant issue for the
framework developers. For example, TensorFlow stores the tensor with the de-
fault format of NHWC. But NCHW is the default format for GPU libraries, e.g.
cudnn [15], making it the framework’s burden to transform between them. Sun-
way TaihuLight has not finally determined its data layout in SWDNN. When
TensorFlow is retargeted to a new platform, data format shall be designed by
taking hardware and/or library into consideration.

6 Related Work

In recent years, AI has drawn many interest from both researchers and industry,
especially DNNs (Deep Neural Networks [16, 17, 12, 13]). Despite the enormous
advance in AI algorithms, researchers have also done extensive work to meet the
performance/energy/programming requirements of DNN applications.



11

First, from the aspect of software, a huge number of software tools are pro-
posed to enable flexible programming of DNN applications, such as Tensor-
Flow [18], Caffe [19], and MXNet [20]. All these tools support general purpose
CPU and high performance nVIDIA GPU, both of which have mature compiler
toolchains [21] and highly optimized libraries [15].

Second, from the aspect of hardware, a series of domain specific acceler-
ators [1, 2, 22, 23] are explored. DianNao [1] leverages loop tiling to efficiently
reuse data and supports both DNNs and CNNs. EIE [2] focus on inference for
compressed DNN models. Furthermore, researchers also explore FPGA as accel-
erators [4, 24, 25] for DNN applications. And to the best of our knowledge, all
these accelerators lack mature compiler toolchains, for example, a C compiler.

At last, it is becoming a big challenge to utilize these diverse hardware accel-
erators in software tools. TensorFlow proposes XLA [5], which leverages compiler
technology to transform high-level dataflow graph to compiler intermediate rep-
resentation, i.e. LLVM IR, relies on hardware-specific backend to generate binary
code, e.g., NVPTX for nVIDIA GPU. Similarly, MXNET introduces NNVM [6],
which also makes use of compiler backend. However, these compiler-based ap-
proaches require a mature compiler backend, which is rarely seen in AI pro-
cessors. Thus, this work explores non-compiler approach of retargeting software
frameworks to diverse AI hardwares. Besides, [26] proposes a NN compiler to
transform a trained NN model to an equivalent network that can run on specific
hardwares, which sheds some light on automatic retargeting of AI frameworks.

7 Conclusion

We have presented our experience of retargeting TensorFlow to different hard-
wares, e.g. FPGA and Sunway, together with some preliminary evaluation results
using popular DNN models. We have investigated the differences between FPGA
and Sunway with respect to retargeting.

Acknowledgments

This work is supported in part by the National Key R&D Program of China
(2016YFB1000402 and 2017YFB0202002), the National Natural Science Foun-
dation of China (61802368, 61521092, 61432016, 61432018, 61332009, 61702485).
The authors would like to thank all the anonymous reviewers for their valuable
comments and helpful suggestions

References

1. T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “Diannao: A
small-footprint high-throughput accelerator for ubiquitous machine-learning,” in
ASPLOS ’14, (New York, NY, USA), ACM, 2014.

2. S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie:
Efficient inference engine on compressed deep neural network,” in ISCA’16.



12

3. “Amazon ec2 f1.” https://aws.amazon.com/cn/ec2/instance-types/f1/.
4. S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang,

H. Yang, and W. B. J. Dally, “Ese: Efficient speech recognition engine with sparse
lstm on fpga,” in FPGA ’17.

5. “Tensorflow xla.” https://www.tensorflow.org/performance/xla/.
6. M. Li, “Introducing nnvm compiler: A new open end-to-end compiler for ai frame-

works,” 2017.
7. “Tensorflow architecture.” https://www.tensorflow.org/extend/architecture.
8. G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.
9. H. Lin, X. Tang, B. Yu, Y. Zhuo, W. Chen, J. Zhai, W. Yin, and W. Zheng, “Scal-

able graph traversal on sunway taihulight with ten million cores,” in IPDPS’17.
10. A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.
11. Y. Lécun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied

to document recognition,” Proceedings of the IEEE, 1998.
12. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” CoRR, vol. abs/1512.00567, 2015.
13. K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual net-

works,” CoRR, vol. abs/1603.05027, 2016.
14. J. Fang, H. Fu, W. Zhao, B. Chen, W. Zheng, and G. Yang, “swdnn: A library for

accelerating deep learning applications on sunway taihulight,” in IPDPS’17, 2017.
15. S. Chetlur, C. Woolley, P. Vandermersch, J. Cohen, J. Tran, B. Catanzaro,

and E. Shelhamer, “cudnn: Efficient primitives for deep learning,” CoRR,
vol. abs/1410.0759, 2014.

16. Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, pp. 2278–2324, Nov 1998.

17. A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in NIPS’12, 2012.

18. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G.
Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine learning,” in OSDI’16.

19. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” in MM ’14, pp. 675–678.

20. T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and
Z. Zhang, “Mxnet: A flexible and efficient machine learning library for heteroge-
neous distributed systems,” CoRR, vol. abs/1512.01274, 2015.

21. C. Nvidia, “Nvidia cuda c programming guide,” Nvidia Corporation, 2011.
22. Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-

efficient dataflow for convolutional neural networks,” in ISCA ’16, 2016.
23. A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany,

J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accelerator for compressed-
sparse convolutional neural networks,” in ISCA ’17.

24. N. Suda, V. Chandra, G. Dasika, A. Mohanty, Y. Ma, S. Vrudhula, J.-s. Seo,
and Y. Cao, “Throughput-optimized opencl-based fpga accelerator for large-scale
convolutional neural networks,” in FPGA ’16, 2016.

25. J. Qiu, J. Wang, S. Yao, K. Guo, B. Li, E. Zhou, J. Yu, T. Tang, N. Xu, S. Song,
Y. Wang, and H. Yang, “Going deeper with embedded fpga platform for convolu-
tional neural network,” in FPGA ’16, 2016.

26. Y. Ji, Y. Zhang, W. Chen, and Y. Xie, “Bridge the gap between neural networks
and neuromorphic hardware with a neural network compiler,” in ASPLOS ’18.


